
Quick Start Guide for FHiCL 3:
The Fermilab Hierarchical

Configuration Language
Walter E. Brown, Chris Green, Kyle Knoepfel, Jim Kowalkowski, Marc Paterno, Ryan Putz

Fermilab/SCD/SSA/SSI
Revision 4

Contents

1 Introduction 1
2 Documents 2
3 Comments 3
4 Names 3
5 Values 4
6 Names vs. keys 7
7 References 8
8 Prologs 12
9 Includes 13
10 Additional facilities 13

1 Introduction

The purpose of this document is to explain and demonstrate the syntax and semantics of
the Fermilab Hierarchical Configuration Language, FHiCL1, so that users may become
comfortable with its features and intended use.

The end product of many years of experience with other configuration languages and
notation, FHiCL has been carefully designed to allow its users to express, record, and
retrieve sets of software parameters used to configure (prepare for a particular purpose) a
program’s execution. We will use the term parameter set to denote any specific collection
of named values accessible to a user’s program while it is running; a FHiCL document
is a textual representation of such a parameter set. Two or more FHiCL documents are
said to be equivalent if they lead to identical parameter sets.

Depending on the programming language used to write the user program, one of several
software subsystems is used to produce a parameter set from a given FHiCL document.
Each such subsystem is known as a binding of the FHiCL specification to the program-
ming language, and provides for the analysis and interpretation of FHiCL documents.

1The customary pronounciation is /fIkl/.

1

mailto:paterno@fnal.gov
mailto:paterno@fnal.gov

2 FHiCL 3 Quick Start Guide (Rev. 4)

While it is up to each binding to specify how users interface to the parameter sets
produced by that binding, it is fundamental that users be able to query a parameter set
by providing it a name (in the form of a string) in order to obtain the value corresponding
to that name. Further, a parameter set must be capable of producing a document that is
equivalent to the original document that gave rise to that parameter set.

2 Documents

2.1 Text

A FHiCL document is simply a sequence of characters (i.e. text), structured as described
below, and is commonly stored in a file whose name is conventionally suffixed .fcl. For
example, my_config.fcl might be the name of such a file. Any conventional text editor
(e.g. emacs, vi, nedit, . . .) may be used to create or to update a FHiCL file.2

2.2 Name-value pairs

A document consists principally of name-value pairs.3 There may be as many or as
few such pairs as desired.4 In each pair, a colon (:) separates the name from the
corresponding value.5

At least one blank, tab, or newline character (collectively known as whitespace) must
separate one pair from the next. The following document, consisting of three name-value
pairs, uses the minimum required whitespace:

1 n:1 pi:3.14159 label:"horizontal axis"

2.3 Optional whitespace

Within a FHiCL document, additional whitespace may be used at the discretion of the
author.6 A binding will ignore any such optional whitespace while producing a parameter
set from the document.

2Note that FHiCL documents need not be represented via any file. A binding may, for example, obtain
a FHiCL document from a database, via a string in a conventional programming language, or via any other
mechanism that can denote simple text. A binding is free to support an arbitrary number of document
sources.

3A name-value pair is sometimes known as an association, because parameter set lookup is designed
to take a name and retrieve the associated value. In this Guide we will usually prefer the simpler pair
nomenclature.

4A document consisting of no name-value pairs is said to be empty, as is the parameter set that a
binding would generate from such a document. Both the empty document and the empty corresponding
parameter set are valid FHiCL constructs.

5In the context of the FHiCL language, the colon is referred to as the standard binding operator.

6Such optional whitespace is commonly used to produce indentation or alignment.

FHiCL 3 Quick Start Guide (Rev. 4) 3

The following document is equivalent to the single-line document shown above. Consisting
of the same three name-value pairs, this variation employs extra whitespace to improve
readability by (a) placing each pair on an individual line and (b) aligning the values:

1 n : 1
2 pi : 3.14159
3 label: "horizontal axis"

3 Comments

Document providers often wish to annotate the document’s contents. For example, it is
common to provide a provenance giving the original author’s name and date, followed by
a revision history. Other annotations include introductory overviews for each section of a
document, or even brief descriptions of individual name-value pairs.

FHiCL provides two ways to introduce (start) a comment:

• With a single # character,7 or else
• With two consecutive forward slashes (//).8

Either or both of these comment introductions may be used within any FHiCL document.

The remainder of the line is the body of the comment, and provides whatever information
the author may desire. The comment implicitly terminates at the end of the line,
although an author may choose to continue his annotation onto any number of additional
comments on subsequent lines.

The following document illustrates the various forms that a FHiCL comment may take.

1 # This is a comment
2 // This is also a comment
3 foo : "bar" # this is a comment "in the margin" ...
4 foo2: "bar2" // ... and so is this

4 Names

4.1 Spelling

The spelling rules for FHiCL names match the spelling rules for identifiers in many
programming languages:

• Each name begins with a letter or with a _ (underscore) character.
• The name may be spelled with as many additional consecutive letters, underscores,

or digits as desired. No other characters (e.g. punctuation or whitespace) may be
embedded within a name.

7This notation is adopted from such scripting languages as bash, perl, and python. The introductory #
character is known variously as a pound sign, hash mark, sharp, or octothorpe.

8This notation is adopted from such programming languages as BCPL and C++.

4 FHiCL 3 Quick Start Guide (Rev. 4)

• Capitalization matters: the name X is not the same name as the uncapitalized name
x. Similarly, FHiCL treats the names Hello, HELLO, and hello as three distinct,
unrelated names.

4.2 Name reuse

Consider the following document, noting especially the reuse of the name a. When
a binding processes this document, how many name-value pairs will the resulting
parameter set contain?

1 a: 1
2 b: 2
3 a: 3

The answer is two. FHiCL provides that, if a document has two name-value pairs that
have a name in common, the value in the later pair overrides (supercedes) the earlier
one.9 Therefore, in the above example, when a is looked up in the parameter set, the
associated value will be found to be 3. Section 7 discusses how the values associated
with previously defined names can be used in other locations of the document.

5 Values

5.1 Classifications

At a high level, each FHiCL value can be classified as either atomic or structured. A
structured value can further be categorized as a sequence or a table. Each value,
therefore, falls under one of the following three FHiCL categories:

atom: A value that has no underlying structure.
sequence: A collection of values that are not associated with any names.
table: A collection of name-value pairs.10

We first discuss values of atomic type, and then discuss the sequence and table.

5.2 Atomic values

5.2.1 Boolean values

The literals true and false correspond to the customary truth values.11

1 debug: true

9If more than two pairs have a name in common, the second pair overrides the first as described above
until the third such pair is encountered. Then the third pair overrides the second until a fourth pair is
encountered, and so on. In this way, the last pair using that name will ultimately override all the earlier
ones with the same name.

10Also commonly referred to as a parameter set.

11Any language binding will convert these literals into the Boolean representations native to that binding.

FHiCL 3 Quick Start Guide (Rev. 4) 5

5.2.2 Numeric values

As in most programming languages, a FHiCL number can have up to four parts:

• The sign part consists of a single + or - character,
• The whole part consists of a non-empty sequence of digits, such as 0 or 123; any

extraneous leading zeroes will be ignored by the binding.
• The fraction part consists of a single . character followed by a possibly empty

sequence of digits; any extraneous trailing zeroes will be ignored by the binding.
• The exponent part consists of a single e or E character, optionally followed by a sign,

followed by a non-empty sequence of digits. Examples include E5 and e-23.

All parts are optional with the restriction that at least one digit is specified in either the
whole or the fraction part.

In addition to the above, FHiCL treats the literal infinity as a number. A sign may
optionally precede this literal.

Supported examples include:

1 i : 14
2 t : .68
3 pi: 3.1415926
4 x : 1.23e2
5 y : -0.45600E+3
6 z : -infinity

A binding must take into account the mathematical value being represented as well as
any constraints imposed by the underlying programming language.

5.2.3 Complex values

A FHiCL complex value is written as two numbers separated by a comma and surrounded
by parentheses:

1 c1: (1, 2)
2 c2: (1.23, -3.1415926)

Whitespace before and after each number is optional.

5.2.4 String values

A FHiCL string is written as a sequence of characters usually enclosed within matching
quotation marks. The quotation marks may be omitted, but only if the string contains no
whitespace, punctuation, or other special characters:

1 s1: a
2 s2: ab
3 s3: string
4 s4: "string"
5 s5: ’string’
6 s6: "123abc"
7 s7: ’123abc’

6 FHiCL 3 Quick Start Guide (Rev. 4)

If the string is double-quoted, escaped characters will be interpreted as follows: \n as a
newline character, \t as a tab, \’ as an apostrophe, \" as a double-quote, and \\ as
a (single) backslash.12 If the string is single-quoted, all characters are taken verbatim;
escaped characters have no special meaning.

5.2.5 @nil value

The literal @nil serves as a placeholder value, distinct from all other FHiCL values. It is
suitable for constructing a name-value pair when no other FHiCL value will do.

1 a: @nil

5.3 Sequence values

A FHiCL sequence starts with a left bracket and ends with a right bracket. These brackets
surround a comma-separated list consisting of an arbitrary number of FHiCL values.
Whitespace before and after each value is optional; thus, the following three sequences
are considered identical.

1 q1: [1, 2, 3, 4]
2 q2: [1, 2
3 , 3, 4
4]
5 q3: [
6 1,
7 2,
8 3,
9 4

10]

Note that FHiCL sequences may be heterogeneous; that is, the elements (values in a
sequence) may be classified differently from each other. For example, some may be
numbers while others are not:

1 q4: [1, (2, 3.14), "a b", @nil, true] # 5 elements
2 q5: [] # 0 elements (empty)
3 q6: [[12, 34], 5] # 2 elements

However, any given binding can support such heterogeneity only to the extent that the
underlying programming language supports it.13

A zero-based subscript (also known as an index) notation can be used to override an
individual element, or even to extend a sequence with an additional element14:

12The binding will produce a diagnostic error message for any other escaped characters.

13This is rarely a restriction because, in practice, sequences tend overwhelmingly to be homogeneous.

14FHiCL sequences are dense: if a sequence contains n elements, their respective subscripts are always
0, 1, . . . , n− 1. Extending a sequence will implicitly insert @nil values, if needed, to preserve this property.

FHiCL 3 Quick Start Guide (Rev. 4) 7

1 fib : [@nil, 1, 1, "", 3, 5] # 6 elements; heterogeneous
2 fib[0]: 0 # @nil changed to ’0’
3 fib[3]: 2 # now a homogeneous sequence
4 fib[6]: 8 # now 7 elements
5 fib[8]: 21 # now 9 elements (fib[7] is @nil)

5.4 Table values

A FHiCL table starts with a left brace and ends with a right brace. Much like a document,
the body of a FHiCL table consists of name-value pairs. Unlike a document, a FHiCL
table cannot have a prolog (see section 8). The following document, for example, consists
of a single name-value pair whose value is a table consisting of three pairs:

1 t: {
2 a: 5
3 b: 6
4 c: { e: 2.718 }
5 }

The member notation can be used to override one of a table’s values, or even to inject an
additional pair into a table:

1 t.b: hi # b’s associated value is overridden with "hi"
2 t.d: 3.14 # table now gains a fourth pair

Note, however, that to override or inject any table values in this way, the full qualification
of the relevant name must be specified. For example, in the following document

1 t2: {
2 c: { e: 2.718 }
3 c.e : "energy" # error
4 }

the name e is only partially qualified when an attempt is made to override its value. The
correct override syntax is to start at the outer-most name and to use the member and
subscript notation as necessary:

1 t2: { c: { e: 2.718 } }
2 t2.c.e : "energy" # OK

6 Names vs. keys

It is helpful to distinguish between a name and a key. In contrast to a name, a key can
include member or subcript notation. Consider the following document:

1 t: {
2 s: [{entry : 1},
3 {another: 2}]
4 a: true
5 }

8 FHiCL 3 Quick Start Guide (Rev. 4)

Table 1: List of names for the above FHiCL document.

Name Value type
t table
s sequence
entry atom
another atom
a atom

Table 2: List of keys associated with above document. All keys that begin with the name
t are fully qualified keys.

Key Value type
t table
t.s sequence
t.s[0] table
t.s[0].entry atom
t.s[1] table
t.s[1].another atom
t.a atom
s sequence
s[0] table
s[0].entry atom
s[1] table
s[1].another atom
entry atom
another atom
a atom

The list of names for this document is shown in Table 1. Table 2 shows the complete
list of keys associated with the same document. Note that each of the names listed in
Table 1 is also a key listed in Table 2–i.e. names are a subset of keys. This distinction is
important when considering references (see section 7).

7 References

Within some documents, a common scenario is to require that two (or more) name-
value pairs with distinct names nonetheless provide the same value. The most obvious
approach is simply to duplicate the value in each pair:

1 m: 1
2 n: 1

FHiCL 3 Quick Start Guide (Rev. 4) 9

However, as is true when writing programs, such duplication becomes problematic over
time because it is not obvious by inspection that these two values are intended always
to be identical. As a result, if a future update were to change the value associated with
m, the required corresponding change to n could be easily overlooked, especially if there
were a great many intervening lines.

7.1 Substitutions

7.1.1 @local::

To help avoid such an unhappy scenario, FHiCL allows a value to refer to a previously-
provided value:

1 m: 1
2 n: @local::m

A construction such as @local::m is known as a FHiCL reference. Each reference
consists of the prefix @local:: followed by a name (here, m) from an earlier name-value
pair.15 The following two documents are thus equivalent:

Document 1

1 a : false
2 s : [a, b, c]
3 t : { d: e }

5 a1: @local::a
6 a2: @local::s[1]
7 a3: @local::t.d
8 s1: @local::s
9 s2: [@local::s, d]

10 t1: @local::t

Document 2

1 a : false
2 s : [a, b, c]
3 t : { d: e }

5 a1: false
6 a2: b
7 a3: e
8 s1: [a, b, c]
9 s2: [[a, b, c], d]

10 t1: { d: e }

Notice that the subscript and member notations can be used for the @local:: keyword
in resolving references. This is true, in general, of any of the FHiCL references (see
section 7.3).

When a binding processes such a reference, the name is looked up among the name-value
pairs processed so far, and the corresponding value substituted (used in place of the
reference). The value used for the substitution is the value associated with the name at
the time the reference is parsed. As a result, future revisions of the configuration file
which contain modifications to the value of the first will automatically be propagated to
the second, and the two pairs will remain in sync.

In a single document, if the referenced name is given a new value, that new value will be
used for subsequent references; previously processed references will not assume the new
value.

15The binding will report an error during processing if the name has not yet been seen.

10 FHiCL 3 Quick Start Guide (Rev. 4)

7.2 Splicing facilities

7.2.1 @table::

The @table:: keyword is used to allow the contents of a referenced table to be spliced
into the table in which it is invoked. For example, the following document:

1 t1: {
2 a: 1
3 b: [2,3]
4 }
5 t2: {
6 @table::t1
7 c: 4
8 }

produces the same parameter set as:

1 t1: {
2 a: 1
3 b: [2,3]
4 }
5 t2: {
6 a: 1 # contents from
7 b: [2,3] # ’table1’
8 c: 4
9 }

7.2.2 @sequence::

Similar to the @table:: keyword, @sequence:: is invoked to splice sequence contents
into already-existing sequences. This document:

1 s1: [1,2,3]
2 s2: [@sequence::s1, 4,5,6]

is equivalent to this one:

1 s1: [1,2,3]
2 s2: [1,2,3, 4,5,6]

7.3 References and fully qualified keys

The above @local::, @table::, and @sequence:: FHiCL-reference keywords can be
used only on fully qualified keys. Consider the following document:

1 t1: {
2 t2: {
3 test: 4
4 list: [6,5,4]
5 }

FHiCL 3 Quick Start Guide (Rev. 4) 11

6 }

To access any of the above values using either substitution or splicing, the sequence
of characters that follows :: must be a fully qualified key. The following invocations
represents valid FHiCL syntax (assuming the tab1 definition is visible):

1 t2: {
2 @table::t1.t2
3 list: [@sequence::t1.t2.list, 3,2,1]
4 }
5 a1: @local::t1.t2.list[0]

The above document is equivalent to:

1 t2: {
2 test: 4
3 list: [6,5,4, 3,2,1]
4 }
5 a1: 6

Note that a fully qualified key cannot be used until the definition of the outer-most name
is complete. This means that this document:

1 t1: {
2 m1 : { setting: 1 }
3 m2 : { setting: @local::t1.m1.setting } # error
4 }

is not a valid FHiCL document because a reference to a t1 member is invoked before the
closing brace of t1 has been reached. A solution to this is to declare a name-value pair
outside of t1 that can be used inside of it:

1 global_setting: 1
2 t1: {
3 m1: { setting: @local::global_setting }
4 m2: { setting: @local::global_setting }
5 }

The disadvantage in this case, however, is that an extra name (global_setting) has
been introduced at outer-most scope to support referencing within a local scope. Since
this name is meant to merely support a single point of maintenance, and it is not
meaningful to what the document is trying to represent, its inclusion could be unwanted.
In addition, if many such names are introduced, the resulting parameter set can be
unnecessarily large, and disentangling the meaningful name-value pairs from those that

12 FHiCL 3 Quick Start Guide (Rev. 4)

are not meaningful can be difficult. This difficulty is resolved by the concept of prologs
(see section 8).

8 Prologs

The purpose of a FHiCL prolog (also known as a prolog section) is to provide name-
value pairs that can be referenced later in the document without appearing in the final
parameter set.

A common use for a prolog is to provide alternative values from which to choose. The
following document uses a prolog in this fashion such that only the 3-element sequence
will appear in the parameter set:

1 BEGIN_PROLOG
2 opt1: [0, 1, 2]
3 opt2: [10, 11, 12, 13]
4 END_PROLOG
5 param: @local::opt1

The parameter set produced from the above document is indistinguishable from that
produced from:

1 param: [0, 1, 2]

A document may contain as many or as few prolog sections as desired, so long as
each starts with BEGIN_PROLOG and ends with END_PROLOG. No prolog may encompass
another prolog; if there is more than one, they must appear strictly sequentially. Only
comments may precede a prolog section; no prolog sections are permitted after a non-
prolog name-value pair has appeared in the document.

Name-value pairs defined in a prolog can be overridden from outside of the prolog.
Consider the following document:

1 BEGIN_PROLOG
2 a: { b: { c: 37 } }
3 END_PROLOG
4 a: { x: 12 }
5 b: @local::a

The value associated with a in the prolog is a table with an additional table nested inside
of it. By reassigning the value of a outside of the prolog, the original prolog definition is
erased, and the parameter set generated from the above document is equivalent to:

1 a: { x: 12 }
2 b: { x: 12 }

FHiCL 3 Quick Start Guide (Rev. 4) 13

9 Includes

To deal with complexity, it may be desirable to assemble a larger FHiCL document from
several smaller parts, with each fragment contained in its own file. Such assembly is
made possible via FHiCL’s #include directive.

The syntax for the directive is very strict in order to avoid possible confusion with a
#-introduced comment: each #include is on a line by itself, with the # in the first column.
There must be exactly one space following #include, and then a double-quoted string
identifying the file name16 of the target FHiCL document fragment.

1 #include "filename1.fcl"
2 #include "/path/to/filename2.fcl"

A document may be composed of as many such directives as desired. The binding will
replace each directive with the document fragment contained in the corresponding named
file.17 A fragment may itself contain #include directives.18 Although such directives are
most commonly found at the start of a document, they may appear wherever a user finds
convenient. However, it is strongly recommended that only prologs be placed in files
that are #included. This ensures that users can most easily glean the structure of a
given FHiCL document under consideration.

10 Additional facilities

10.1 @erase

Specifying the @erase symbol as a value removes the previously defined name-value pair
from the parameter set. For example, in this document:

1 a : {
2 b1 : "some string"
3 }
4 a.b1 : @erase

the name b1 is removed, and the table a is empty.

10.2 Modified binding operators and protection

In addition to the standard binding operator (:), there are two additional binding
operators—@protect_ignore: and @protect_error:. These bindings are single sym-
bols in that no space is permitted between the initial @ and the word, or between the word

16It has become conventional to identify such files with the suffix .fcl.

17If it is set, the environment variable FHICL_FILE_PATH is consulted by the binding to locate a file so
named. The value of this variable is the usual colon-separated paths typified by the bash standard PATH
variable.

18However, no fragment may include itself, even indirectly.

14 FHiCL 3 Quick Start Guide (Rev. 4)

and the trailing :. The three binding operators correspond to the following protection
levels, ordered by increasing priority level:

None: A value bound to a name using : can be subsequently overridden. This protection
represents the lowest priority level of the three.

Ignore: For a value bound using @protect_ignore:, subsequent assignments to the
specified name are ignored.

Error: For a value bound using @protect_error:, a subsequent assignment attempt to
the specified name is an error, for which a diagnostic message is provided by the
binding language.

10.2.1 Protection inheritance

During assignment, a protection level is inherited from an enclosing name if the nested
name has no specified protection. It is an error, however, if the enclosed name has a
specified protection level of ignore when the enclosing name has a protection level of error.
For example, the following FHiCL document:

1 a @protect_ignore: { b: 13 }

is equivalent to:

1 a @protect_ignore: {
2 b @protect_ignore: 13
3 }

This document, however,

1 a @protect_error: { b @protect_ignore: 13 }

is an error.

10.2.2 Protection when using @erase

Use of @erase on a name at a higher nesting level than that of a protected name ignores
the protection of the item. For example:

1 a1: { b: { x @protect_ignore: 7 } }
2 a2 @protect_ignore: { b: { x: 7 } }
3 a1: @erase
4 a2: @erase

is equivalent to

1 a1: {}
2 a2 @protect_ignore: { b: { x: 7 } }

where the contents of a1 have been erased, and those of a2 have been retained.

10.2.3 Additional restrictions

It is an error to use a modified binding operator for an assignment to a name that already
has a value:

FHiCL 3 Quick Start Guide (Rev. 4) 15

1 a: 2
2 a @protect_ignore: 3 # error

Similarly, a local or fully qualified override shall honor protection, whereas a nested
replacement shall not. For example:

1 a : { b : { c @protect_error: 37 } }
2 d : @local::a

4 a.b.c: 37 # error - protection honored
5 a : 12 # OK - protection overridden
6 d : { b: { c: 43 } } # OK - protection overridden

In the case of a local override attempt, the protection is respected:

1 a: {
2 b: {
3 c @protect_error: 37
4 d: 31
5 c: 43 #error - local override attempt
6 }
7 }

	1 Introduction
	2 Documents
	3 Comments
	4 Names
	5 Values
	6 Names vs. keys
	7 References
	8 Prologs
	9 Includes
	10 Additional facilities

